About EASVOLEE

The primary objectives of EASVOLEE are to:

- Quantify the contributions of secondary particulate matter formation from transport engines to air quality problems in Europe.
- ii. Develop and identify health-related metrics, mitigation strategies, and policies to improve air quality limiting the concentrations of aerosol (organic, inorganic, nanoparticles, primary and secondary) due to vehicle exhaust.

Consortium

Contact Us

Institute of Chemical Engineering Sciences (FORTH) Stadiou Str., Platani GR-265 04 Patras, Greece Tel.: +30 2610 965300

Project Coordinator:
Prof. Spyros Pandis
E-mail: spyros@chemeng.upatras.gr

Effects on air quality of semi-volatile engine emissions

Website & Social media

http://www.easvolee.eu/

■ @EASVOLEE_EU

in @EASVOLEE project

EASVOLEE has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101095457.

EASVOLEE will:

Quantify the role of engine exhaust emissions including contributions to secondary PM and particle number in Europe.

Assess toxicity of the secondary PM from transportation.

Reduce smog episodes and population exposure to air pollution (especially PM) in Europe.

Reduce uncertainty about sources of PM especially the often dominant secondary fraction.

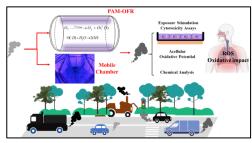
Develop appropriate chemical transport models for the simulation of semivolatile PM, secondary organic aerosol (SOA) and particle number.

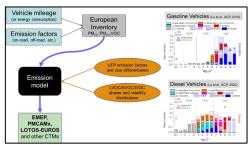
Support the Zero-Pollution Plan of EU Green Deal.

Using state-of-the-art measurement techniques

- Measurement of emissions:
 - o under real driving conditions

- under simulated driving conditions on a dynamometer
- o in a parking structure


in a traffic tunnel


 Measurement of all organic pollutants that are relevant to aerosol formation (volatile, intermediate volatility, semivolatile, lowvolatility organic compounds)

Using state-of-the-art health and modelling techniques

- Quantification of atmospheric processing using oxidation flow reactors and mobile atmospheric simulation chambers.
- Oxidative potential measurements
- Mechanistic understanding of biological effects using cells

 Development of a new state-of-the-art European emission inventory

Creation of new emission indexes

EASVOLEE target groups

- Research/scientific communities
- Public authorities and Government
- International bodies
- Private sector/Industries
- General public and society